In situ crystallization of non-cotectic and foliated igneous rocks on a magma chamber floor

Author:

Kruger WillemORCID,Latypov RaisORCID

Abstract

AbstractLayered mafic intrusions commonly contain non-cotectic, foliated igneous rocks that are traditionally attributed to processes involving settling, transport, and redeposition of crystals. Here we examine the chemistry of magnetitite layers of the Bushveld Complex using a portable XRF spectrometer on drill core and dissolution ICP-MS analysis on pure magnetite separates. While magnetitites contain foliated plagioclase grains in non-cotectic proportions, the magnetite is characterized by a regular upwards-depletion of Cr which is best explained by in situ crystallization. We suggest that plagioclase nucleation in thin residual compositional boundary layers atop a solidification front causes in situ growth of plagioclase in proportions much lower (<10%) than those expected from cotectic crystallization (±85%). Crystallization in such a boundary layer also favours lateral growth of the plagioclase, producing the foliation. We suggest that some non-cotectic, foliated rocks that are commonly interpreted to arise from gravity-induced sedimentary processes may instead be produced by in situ crystallization.

Funder

National Research Foundation

Department of Science and Technology (DST)-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis (CIMERA) of South Africa

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3