Improved seasonal prediction of harmful algal blooms in Lake Erie using large-scale climate indices

Author:

Tewari MukulORCID,Kishtawal Chandra M.,Moriarty Vincent W.ORCID,Ray PallavORCID,Singh TarkeshwarORCID,Zhang LeiORCID,Treinish LloydORCID,Tewari KushagraORCID

Abstract

AbstractHarmful Algal Blooms lead to multi-billion-dollar losses in the United States due to shellfish closures, fish mortalities, and reluctance to consume seafood. Therefore, an improved early seasonal prediction of harmful algal blooms severity is important. Conventional methods for harmful algal blooms prediction using nutrient loading as the primary driver have been found to be less accurate during extreme bloom years. Here we show that a machine learning approach using observed nutrient loading, and large-scale climate indices can improve the harmful algal blooms prediction in Lake Erie. Moreover, the seasonal prediction of harmful algal blooms can be completed by early June, before the expected peak in harmful algal bloom activity from July to October. This improved early seasonal prediction can provide timely information to policymakers for adopting proper planning and mitigation strategies such as restrictions in harvesting and help in monitoring toxins in shellfish to keep contaminated products off the market.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference54 articles.

1. Anderson, D. M., Cembella, A. D. & Hallengraeff, G. M. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research monitoring and management. Ann. Rev. Marine Sci. 4, 143–176 (2011).

2. McPartlin, D. A. et al. Biosensors for the monitoring of harmful algal blooms. Curr. Opin. Biotechnol. 43, 164–169 (2017).

3. Kudela, R. M. Harmful algal blooms: A scientific summary for policy makers – UNESCO Digital Library. IOC/INF-1320 REV https://unesdoc.unesco.org/ark:/48223/pf0000233419 (2015).

4. Grannemann, N. G. & Reeves, H. W. Great Lakes basin water availability and use. A study of the national assessment of water availability and use program, USGS, Fact Sheet 2005-3113, pp 1–4. https://pubs.usgs.gov/fs/2005/3113/pdf/FS2005_3113.pdf (2005).

5. Magnuson, J. et al. Potential effects of climate change on aquatic systems: Laurentian Great Lakes and Precambrian Shield region. Hydrol. Processes 11, 825–871 (1997).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3