Future transition from forests to shrublands and grasslands in the western United States is expected to reduce carbon storage

Author:

Kodero Jared M.ORCID,Felzer Benjamin S.ORCID,Shi Yuning

Abstract

AbstractClimate change is expected to impact vegetation in the western United States, leading to shifts in dominant Plant Functional Types and carbon storage. Here, we used a biogeographic model integrated with a biogeochemical model to predict changes in dominant Plant Functional Type by 2070−2100. Results show that under the Representative Concentration Pathway 4.5 scenario, 40% of the originally forested areas will transition to shrubland (7%) or grassland (32%), while under the Representative Concentration Pathway 8.5 scenario, 58% of forested areas shift to shrubland (18%) or grassland (40%). These shifts in Plant Functional Types result in a net overall loss in carbon storage equal to −60 gigagram of carbon and −82 gigagram of carbon under Representative Concentration Pathway 4.5 and 8.5, respectively. Our findings highlight the need for urgent action to mitigate the effects of climate change on vegetation and carbon storage in the region.

Funder

The research was funded by Lehigh University's Earth and Environmental Science Department.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3