Background climate conditions regulated the photosynthetic response of Amazon forests to the 2015/2016 El Nino-Southern Oscillation event

Author:

Fancourt MaxORCID,Ziv GuyORCID,Boersma Klaas Folkert,Tavares Julia,Wang Yunxia,Galbraith DavidORCID

Abstract

AbstractAmazon forests have experienced multiple large-scale droughts in recent decades, which have increased tree mortality and reduced carbon sequestration. However, the extent to which drought sensitivity varies across Amazonian forests and its key controls remain poorly quantified. Here, we analyse satellite remotely-sensed Solar Induced Fluorescence anomalies to investigate responses in Amazon forest photosynthetic activity to the 2015-2016 El Nino-Southern Oscillation (ENSO) drought. Using multivariate regression analysis, we examine the relative importance of ENSO-associated climate anomalies, background climate and soil characteristics in controlling basin-wide forest photosynthetic activity differences. Our model explains 25% of forest photosynthetic response and indicates background climate and soil conditions had a greater influence than the climatic anomalies experienced. We find marked sensitivity differences across Amazonia, with North-Western forests being the most sensitive to precipitation anomalies, likely relating to variation in forest species composition and background water stress. Such factors should be considered in climate change impact simulations.

Funder

RCUK | Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3