Landslide susceptibility modeling by interpretable neural network

Author:

Youssef K.,Shao K.,Moon S.,Bouchard L.-S.ORCID

Abstract

AbstractLandslides are notoriously difficult to predict because numerous spatially and temporally varying factors contribute to slope stability. Artificial neural networks (ANN) have been shown to improve prediction accuracy but are largely uninterpretable. Here we introduce an additive ANN optimization framework to assess landslide susceptibility, as well as dataset division and outcome interpretation techniques. We refer to our approach, which features full interpretability, high accuracy, high generalizability and low model complexity, as superposable neural network (SNN) optimization. We validate our approach by training models on landslide inventories from three different easternmost Himalaya regions. Our SNN outperformed physically-based and statistical models and achieved similar performance to state-of-the-art deep neural networks. The SNN models found the product of slope and precipitation and hillslope aspect to be important primary contributors to high landslide susceptibility, which highlights the importance of strong slope-climate couplings, along with microclimates, on landslide occurrences.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3