Low effective ultraviolet exposure ages for organics at the surface of Enceladus

Author:

Hendrix Amanda R.ORCID,House Christopher H.

Abstract

AbstractThe saturnian moon Enceladus presents a remarkable opportunity in our solar system for searching for evidence of life, given its habitable ocean and plume that deposits organic-bearing ocean material onto the surface. Organic ocean material could be sampled by a lander mission at Enceladus. It is of interest to understand the amount of relatively pristine, unaltered organics present on the surface, given the ultraviolet (UV) and plasma environment. Here, we investigate UV penetration into Enceladus’s surface and the resultant effective exposure ages for various regions, using the UV reflectance spectrum of Enceladus as measured by the Hubble Space Telescope and considering the rate of resurfacing by plume fallout. In high plume fallout regions near the south pole, plume grains are buried by fresher grains within years, resulting in low levels of exposure to solar UV, which penetrates only ~100 micrometers. Regions at latitudes south of ~40°S can have exposure ages <100 years, translating to relatively high abundances of pristine organic material preserved in the regolith.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3