Projected amplification of summer marine heatwaves in a warming Northeast Pacific Ocean

Author:

Athanase MarylouORCID,Sánchez-Benítez Antonio,Goessling Helge F.ORCID,Pithan FelixORCID,Jung ThomasORCID

Abstract

AbstractMarine heatwaves are expected to become more frequent, intense, and longer-lasting in a warming world. However, it remains unclear whether feedback processes could amplify or dampen extreme ocean temperatures. Here we impose the observed atmospheric flow in coupled climate simulations to determine how the record-breaking 2019 Northeast Pacific marine heatwave would have unfolded in preindustrial times, and how it could unravel in a +4 °C warmer world compared to present-day conditions. We find that air-sea interactions, involving reductions in clouds and ocean mixed-layer depth and air advection from fast-warming subpolar regions, modulate warming rates within the marine heatwave. In a +4 °C warmer climate, global oceans are +1.9 °C warmer than present levels, and regional mean warming in the Northeast Pacific can reach +2.3–2.7 ± 0.25 °C. Our identified feedback processes are projected to further amplify the intensity and spatial extent of analogous Northeast Pacific summer marine heatwaves beyond those thresholds, with a warming reaching +2.9 ± 0.15 °C above present levels. Such an event-specific amplification would place even greater stress on marine ecosystems and fisheries.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3