Abstract
AbstractSimilarly to the effects of current climate change, the last deglaciation (Termination I) rapidly altered northern latitude temperatures and ice-sheet extent, as well as the Atlantic Meridional Overturning Circulation. However, it is still unclear how these changes propagated and impacted the central Mediterranean continental rainfall variability. This prevents a full understanding on how global warming will affect Mediterranean areas in the future. Here, we present a high-resolution reconstruction of rainfall changes in the central Mediterranean across Termination I, based on a novel δ18O time series from a southern Italian stalagmite. Across Termination I the availability of Atlantic moisture varied in response to northern latitude temperature increases (decreases) and ice-sheet decreases (increases), promoting a higher (lower) intensity of the Atlantic Meridional Overturning Circulation, and resulting in a relatively wetter (drier) climate in the Mediterranean. In the light of future warming, this study emphasises the role of high-latitude climate changes in causing rainfall variation in highly populated Mediterranean areas.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献