Limited Mediterranean sea-level drop during the Messinian salinity crisis inferred from the buried Nile canyon

Author:

Gvirtzman ZoharORCID,Heida Hanneke,Garcia-Castellanos Daniel,Bar Oded,Zucker Elchanan,Enzel YehoudaORCID

Abstract

AbstractThe extreme Mediterranean sea-level drop during the Messinian salinity crisis has been known for >50 years, but its amplitude and duration remain a challenge. Here we estimate its amplitude by restoring the topography of the Messinian Nile canyon and the vertical position of the Messinian coastline by unloading of post-Messinian sediment and accounting for flexural isostasy and compaction. We estimate the original depth of the geomorphological base level of the Nile River at ~600 m below present sea level, implying a drawdown 2–4 times smaller than previously estimated from the Nile canyon and suggesting that salt precipitated under 1–3 km deep waters. This conclusion is at odds with the nearly-desiccated basin model (>2 km drawdown) dominating the scientific literature for 50 years. Yet, a 600 m drawdown is ca. five times larger than eustatic fluctuations and its impact on the Mediterranean continental margins is incomparable to any glacial sea-level fall.

Funder

European Cooperation in Science and Technology

EC | Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3