Intensification and shutdown of deep convection in the Labrador Sea were caused by changes in atmospheric and freshwater dynamics

Author:

Yashayaev IgorORCID

Abstract

AbstractLabrador Sea winter convection forms a cold, fresh and dense water mass, Labrador Sea Water, that sinks to the intermediate and deep layers and spreads across the ocean. Convective mixing undergoes multi-year cycles of intensification (deepening) and relaxation (shoaling), which have been also shown to modulate long-term changes in the atmospheric gas uptake by the sea. Here I analyze Argo float and ship-based observations to document the 2012-2023 convective cycle. I find that the highest winter cooling for the 1994-2023 period was in 2015, while the deepest convection for the 1996-2023 period was in 2018. Convective mixing continued to deepen after 2015 because the 2012-2015 winter mixing events preconditioned the water column to be susceptible to deep convection in three more years. The progressively intensified 2012-2018 winter convections generated the largest and densest class of Labrador Sea Water since 1995. Convection weakened afterwards, rapidly shoaling by 800 m per year in the winters of 2021 and 2023. Distinct processes were responsible for these two convective shutdowns. In 2021, a collapse and an eastward shift of the stratospheric polar vortex, and a weakening and a southwestward shift of the Icelandic Low resulted in extremely low surface cooling and convection depth. In 2023, by contrast, convective shutdown was caused by extensive upper layer freshening originated from extreme Arctic sea-ice melt due to Arctic Amplification of Global Warming.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3