The dynamical complexity of seasonal soundscapes is governed by fish chorusing

Author:

Siddagangaiah Shashidhar,Chen Chi-Fang,Hu Wei-Chun,Farina Almo

Abstract

AbstractPassive acoustic monitoring technology can depict underwater soundscapes, yet phenological and seasonal patterns and shifts in soundscapes are still poorly understood. Here we analyse the seasonal soundscape in the Eastern Taiwan Strait in 2017 using nonlinear dynamical complexity modelling. We find an annual phenology of fish chorusing that begins in spring, and peaks in summer before beginning to subside in autumn and becoming silent in winter. During spring and summer, the soundscape exhibited significantly higher complexity and predictability than in autumn and winter, due to the presence of regular fish chorusing. Soundscape dynamics shifted from being nonlinear in spring and summer to being linear and stochastic in autumn and winter. Our findings suggest that soundscapes could be used to measure phenological patterns and seasonal shifts in marine species behaviour. We propose that monitoring soundscapes could help assess the long-term health of marine ecosystems under environmental and climatic change.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3