Ecological resilience of restored peatlands to climate change

Author:

Loisel JulieORCID,Gallego-Sala Angela

Abstract

AbstractDegradation of peatlands through land-use change and drainage is currently responsible for 5-10% of global annual anthropogenic carbon dioxide emissions. Therefore, restoring disturbed and degraded peatlands is an emerging priority in efforts to mitigate climate change. While restoration can revive multiple ecosystem functions, including carbon storage, the resilience of restored peatlands to climate change and other disturbances remains poorly understood. Here, we review the recent literature on the response of degraded and restored peatlands to fire, drought and flood. We find that degraded sites can generally be restored in a way that allows for net carbon sequestration. However, biodiversity, hydrological regime, and peat soil structure are not always fully restored, even after a decade of restoration efforts, potentially weakening ecosystem resilience to future disturbances. As the recovery of degraded peatlands is fundamental to achieving net-zero goals and biodiversity targets, sound science and monitoring efforts are needed to further inform restoration investments and priorities.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3