Continuous decrease in soil organic matter despite increased plant productivity in an 80-years-old phosphorus-addition experiment

Author:

Spohn MarieORCID,Braun SabinaORCID,Sierra Carlos A.

Abstract

AbstractThe objective of this study was to understand how eight decades of tillage affected soil element dynamics. We measured soil chemical properties and the 14C:12C ratio (Δ14C) of organic carbon in one of the oldest cropland experiments in Europe with different levels of phosphorus addition. Soil total and organic phosphorus stocks in the uppermost 20 cm did not differ significantly between the control and the phosphorus addition treatments after 80 years, indicating plant phosphorus uptake from the subsoil. Crop yields increased from 220 g dry weight m−2 in 1936 to more than 500 g dry weight m−2 in the 2010s. The soil total organic carbon and total organic phosphorus stocks decreased by 13.7% and 11.6%, respectively, in the uppermost 20 cm of the soils during the experiment, irrespective of phosphorus addition. Based on modeling of Δ14C, we show that the mean transit time of carbon in the soil was below 10 years, indicating that a large share of the carbon inputs to soil is quickly respired. Our results suggest that the current agricultural practice at this long-term experiment is not sustainable because it led to a continuous decrease in soil organic matter over the last decades, despite increases in plant productivity.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3