Increased contribution of biomass burning to haze events in Shanghai since China’s clean air actions

Author:

Fang WenzhengORCID,Evangeliou Nikolaos,Eckhardt SabineORCID,Xing Ju,Zhang Hailong,Xiao Hang,Zhao MeixunORCID,Kim Sang-WooORCID

Abstract

AbstractHigh levels of East Asian black carbon (BC) aerosols affect ecological and environmental sustainability and contribute to climate warming. Nevertheless, the BC sources in China, after implementing clean air actions from 2013‒2017, are currently elusive due to a lack of observational constraints. Here we combine dual-isotope-constrained observations and chemical-transport modelling to quantify BC’s sources and geographical origins in Shanghai. Modelled BC concentrations capture the overall source trend from continental China and the outflow to the Pacific. Fossil sources dominate (~70%) BC in relatively clean summer. However, a striking increase in biomass burning (15‒30% higher in a fraction of biomass burning compared to summer and 2013/2014 winter), primarily attributable to residential emissions, largely contributes to wintertime BC (~45%) pollution. It highlights the increasing importance of residential biomass burning in the recent winter haze associated with >65% emissions from China’s central-east corridor. Our results suggest clearing the haze problem in China’s megacities and mitigating climate impact requires substantial reductions in regional residential emissions, besides reducing urban traffic and industry emissions.

Funder

The research was funded based on East China Normal University. W.F. acknowledges the start-up funding from East China Normal University.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3