Arctic cyclones have become more intense and longer-lived over the past seven decades

Author:

Zhang XiangdongORCID,Tang Han,Zhang Jing,Walsh John E.,Roesler Erika L.,Hillman Benjamin,Ballinger Thomas J.ORCID,Weijer WilbertORCID

Abstract

AbstractIntense cyclones driving extreme Arctic weather and climate events have been more frequently observed during recent years, causing dramatic environmental and socioeconomic impacts. However, inconsistencies have emerged about long-term changes in Arctic cyclone activity. Here we analyze multiple reanalysis datasets covering a multidecadal period with improvements to the cyclone tracking algorithm and the integrated cyclone activity metric. The results indicate an intensification of Arctic cyclone activity over the last seven decades. There has been a long-term shift of the maximum cyclone counts from weaker to stronger cyclones and a pronounced lengthening of the duration of strong cyclones. Spatial analysis shows increased strong cyclone frequency over the Arctic, driven by enhanced lower troposphere baroclinicity, amplified winter jet stream waves over the subpolar North Atlantic, and a strengthened summer tropospheric vortex over the central Arctic. The stratospheric vortex has also intensified the tropospheric waves and vortex with distinct dynamics between winter and summer. Recently enhanced baroclinicity over large areas of the Arctic and midlatitudes suggests more complicated atmospheric dynamics than what is hypothesized with Arctic-amplification-induced decrease in meridional temperature gradients.

Funder

U.S. Department of Energy

United States Department of Defense | United States Navy | Office of Naval Research

United States Department of Commerce | National Oceanic and Atmospheric Administration

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3