Improved estimates of extreme wave conditions in coastal areas from calibrated global reanalyses

Author:

Fanti ValeriaORCID,Ferreira ÓscarORCID,Kümmerer VincentORCID,Loureiro CarlosORCID

Abstract

AbstractThe analysis of extreme wave conditions is crucial for understanding and mitigating coastal hazards. As global wave reanalyses allow to extend the evaluation of wave conditions to periods and locations not covered by in-situ measurements, their direct use is common. However, in coastal areas, the accuracy of global reanalyses is lower, particularly for extreme waves. Here we compare two leading global wave reanalyses against 326 coastal buoys, demonstrating that both reanalyses consistently underestimate significant wave height, 50-year return period and mean wave period in most coastal locations around the world. Different calibration methods applied to improve the modelled extreme waves, resulting in a 53% reduction in the underestimation of extreme wave heights. Importantly, the 50-year return period for significant wave height is improved on average by 55%. Extreme wave statistics determined for coastal areas directly from global wave reanalyses require careful consideration, with calibration largely reducing uncertainty and improving confidence.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3