High precipitation rates increase potassium density in plant communities in the Tibetan Plateau

Author:

Li Xin,Li MingxuORCID,Cen XiaoyuORCID,Xu Li,He Nianpeng

Abstract

AbstractPotassium is essential for plant growth. However, our understanding of potassium in plant materials is limited due to a lack of systematic studies. Here, we measured potassium content in 2,040 ecosystem communities during the period 2019-2021 applying grid-sampling and explored the spatial patterns and drivers of potassium density in the Tibetan Plateau vegetation. Potassium content, density, and storage were estimated at 8.63 milligrams per grams, 21.71 grams per square meter, and 19.92 teragrams, respectively. Potassium allocation was isometric in most ecosystems, except for deserts which followed optimal partitioning. Precipitation was the main driver of potassium variations, with higher potassium in humid regions. The spatial distribution, as revealed by random forests model, indicated higher potassium in the southeastern regions but lower potassium values in the northwestern regions. Our research sheds light on climate change’s impact on vegetation potassium, offering valuable data for biogeochemical cycle optimization.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3