Abstract
AbstractAnalyzing seismic data in a timely manner is essential for potential eruption forecasting and early warning in volcanology. Here, we demonstrate that unsupervised machine learning methods can automatically uncover hidden details from the continuous seismic signals recorded during Iceland’s 2021 Geldingadalir eruption. By pinpointing the eruption’s primary phases, including periods of unrest, ongoing lava extrusion, and varying lava fountaining intensities, we can effectively chart its temporal progress. We detect a volcanic tremor sequence three days before the eruption, which may signify impending eruptive activities. Moreover, the discerned seismicity patterns and their temporal changes offer insights into the shift from vigorous outflows to lava fountaining. Based on the extracted patterns of seismicity and their temporal variations we propose an explanation for this transition. We hypothesize that the emergence of episodic tremors in the seismic data in early May could be related to an increase in the discharge rate in late April.
Funder
Deutscher Akademischer Austauschdienst
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献