Continuous increase in evaporative demand shortened the growing season of European ecosystems in the last decade

Author:

Rahmati MehdiORCID,Graf AlexanderORCID,Poppe Terán ChristianORCID,Amelung Wulf,Dorigo WouterORCID,Franssen Harrie-Jan HendricksORCID,Montzka CarstenORCID,Or DaniORCID,Sprenger MatthiasORCID,Vanderborght JanORCID,Verhoest Niko E. C.ORCID,Vereecken HarryORCID

Abstract

AbstractDespite previous reports on European growing seasons lengthening due to global warming, evidence shows that this trend has been reversing in the past decade due to increased transpiration needs. To asses this, we used an innovative method along with space-based observations to determine the timing of greening and dormancy and then to determine existing trends of them and causes. Early greening still occurs, albeit at slower rates than before. However, a recent (2011–2020) shift in the timing of dormancy has caused the season length to decrease back to 1980s levels. This shortening of season length is attributed primarily to higher atmospheric water demand in summer that suppresses transpiration even for soil moisture levels as of previous years. Transpiration suppression implies that vegetation is unable to meet the high transpiration needs. Our results have implications for future management of European ecosystems (e.g., net carbon balance and water and energy exchange with atmosphere) in a warmer world.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3