A scalable big data approach for remotely tracking rangeland conditions

Author:

Xie ZunyiORCID,Game Edward T.,Phinn Stuart R.ORCID,Adams Matthew P.,Bayarjargal Yunden,Pannell David J.,Purevbaatar Ganbold,Baldangombo Batkhuyag,Hobbs Richard J.,Yao Jing,McDonald-Madden EveORCID

Abstract

AbstractRangelands, covering half of the global land area, are critically degraded by unsustainable use and climate change. Despite their extensive presence, global assessments of rangeland condition and sustainability are limited. Here we introduce a novel analytical approach that combines satellite big data and statistical modeling to quantify the likelihood of changes in rangeland conditions. These probabilities are then used to assess the effectiveness of management interventions targeting rangeland sustainability. This approach holds global potential, as demonstrated in Mongolia, where the shift to a capitalist economy has led to increased livestock numbers and grazing intensity. From 1986 to 2020, heavy grazing caused a marked decline in Mongolia’s rangeland condition. Our evaluation of diverse management strategies, corroborated by local ground observations, further substantiates our approach. Leveraging globally available yet locally detailed satellite data, our proposed condition tracking approach provides a rapid, cost-effective tool for sustainable rangeland management.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference51 articles.

1. Reeves, M. C. et al. Global view of remote sensing of rangelands: evolution, applications, future pathways. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing, Remote Sensing Handbook (CRC Press, 2015).

2. Godde, C. M., Garnett, T., Thornton, P. K., Ash, A. J. & Herrero, M. Grazing systems expansion and intensification: drivers, dynamics, and trade-offs. Glob. Food Secur. 16, 93–105 (2017).

3. Fargher, J., Howard, B., Burnside, D. & Andrew, M. The economy of Australian rangelands—myth or mystery? Rangel. J. 25, 140–156 (2003).

4. Montanarella, L., Scholes, R. & Brainich, A. The Assessment Report on Land Degradation and Restoration (IPBES secretariat, Bonn, Germany, 2018).

5. IUCN. The IUCN Red List of Threatened Species. Version 2020-2 https://www.iucnredlist.org (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3