Tree growth and survival are more sensitive to high rainfall than drought in an aseasonal forest in Malaysia

Author:

O’Brien Michael J.ORCID,Hector AndyORCID,Ong Robert,Philipson Christopher D.

Abstract

AbstractGlobal change research has largely focused on the effects of drought on forest dynamics while the importance of excessive rainfall that can cause waterlogged soils has largely been assessed in riparian zones or seasonally flooded sites. However, increased rainfall may also cause decreased growth and survival of tree species in lowland aseasonal tropical forests due to increased risk from potentially more extensive and frequent waterlogged soils. We used a Bayesian modelling approach on a tree dynamics dataset from 2004 to 2017 to test the concomitant effects of rainfall excess and deficit and dry period length on tree growth and survival across a network of experimentally planted trees in a primary aseasonal forest in Malaysia. Growth declined in 48% of the species and survival decreased in 92% of the species during periods of high rainfall while as little as 4% of species had decreased growth or survival with drought and long dry periods. Climate change is projected to cause more frequent and severe rainfall deficit and excess, and our results suggest increased rainfall may have stronger negative effects on aseasonal tropical forests than that of severe drought.

Funder

Comunidad de Madrid

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3