Abstract
AbstractAn earthquake sequence in western Canada exhibits resurgent aftershocks, possibly in response to persistent, post-mainshock saltwater disposal. Here, we reduce uncertainty in mainshock source parameters with joint inference of interferometric synthetic aperture radar and seismic waveform data, showing that the mainshock nucleated at about 5-km depth, propagating up-dip toward the injection source, and arresting at about 2-km depth. With precise hypocenter relocations and Bayesian inference, we reveal that four subparallel faults were reactivated, likely part of a regional, basement-rooted graben system. The reactivated faults appear to be truncated by a conjugate fault that is misoriented for slip in the present-day stress regime. The nearest saltwater disposal well targets a permeable Devonian reef in direct contact with Precambrian basement, atop a ridge-like uplift. Our observations show that a fault system can be activated more than a decade after saltwater disposal initiation, and continued disposal may lead to a resurgence of seismicity.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference100 articles.
1. Schultz, R. et al. Disposal from in situ bitumen recovery induced the ML 5.6 Peace River earthquake. Geophys. Res. Lett. 50, e2023GL102940 (2023).
2. Alberta Energy Regulator (AER). Announcement—November 30, 2022. Seismic Events Southeast of Peace River https://www.aer.ca/providing-information/news-and-resources/news-and-announcements/announcements/announcement-november-30-2022 (2022).
3. Eaton, D. W. Passive Seismic Monitoring of Induced Seismicity: Fundamental Principles and Application to Energy Technologies (Cambridge University Press, 2018).
4. Zhang, H., Eaton, D. W., Li, G., Liu, Y. & Harrington, R. M. Discriminating induced seismicity from natural earthquakes using moment tensors and source spectra. J. Geophys. Res. Solid Earth 121, 972–993 (2016).
5. Shapiro, S. A., Huenges, E. & Borm, G. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys. J. Int. 131, F15–F18 (1997).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献