Abstract
AbstractUnraveling drivers of the interannual variability of tropical land carbon cycle is critical for understanding land carbon-climate feedbacks. Here we utilize two generations of factorial model experiments to show that interannual variability of tropical land carbon uptake under both present and future climate is consistently dominated by terrestrial water availability variations in Earth system models. The magnitude of this interannual sensitivity of tropical land carbon uptake to water availability variations under future climate shows a large spread across the latest 16 models (2.3 ± 1.5 PgC/yr/Tt H2O), which is constrained to 1.3 ± 0.8 PgC/yr/Tt H2O using observations and the emergent constraint methodology. However, the long-term tropical land carbon-climate feedback uncertainties in the latest models can no longer be directly constrained by interannual variability compared with previous models, given that additional important processes are not well reflected in interannual variability but could determine long-term land carbon storage. Our results highlight the limited implication of interannual variability for long-term tropical land carbon-climate feedbacks and help isolate remaining uncertainties with respect to water limitations on tropical land carbon sink in Earth system models.
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Friedlingstein, P. et al. Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. J. Clim. 19, 3337–3353 (2006).
2. Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).
3. Canadell, J. G. et al. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds V. Masson-Delmotte et al.) 673–816 (Cambridge University Press, 2021).
4. Arora, V. K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).
5. Wang, W. L. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl. Acad. Sci. USA 110, 13061–13066 (2013).