Abstract
AbstractPaleoceanographic records suggest that the present-day vertical gradient in the stable carbon isotopic composition (δ13C) of dissolved inorganic carbon in the ocean was reversed during the Paleocene-Eocene Thermal Maximum, an early period of relatively rapid release of carbon into the climate system. Here we present simulations from an observationally constrained ocean model under various greenhouse gas emissions scenarios. We project a decrease in the globally averaged δ13C of dissolved inorganic carbon in the surface ocean of between −1.8 to −6.3 ‰ by 2100. This reduction is driven by oceanic absorption of anthropogenic carbon dioxide, which is depleted in carbon-13. Our findings suggest an elimination or reversal of the natural vertical gradient in the δ13C of dissolved inorganic carbon by 2100 unless anthropogenic carbon emissions are reduced soon. We conclude that the Paleocene-Eocene Thermal Maximum is a geologic analogue of future global carbon cycle perturbations under continued rapid anthropogenic carbon emissions.
Funder
National Research Foundation of Korea
Institute of Basic Sciences of Korea, IBS-R028-D1
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献