Abstract
AbstractGlobal warming and permafrost degradation are impacting landscapes, ecosystems and the climate-carbon system. Current ground ice and geohazard maps rely on the frost susceptibility of surficial sediments, and substantial areas underestimate ice abundance. Here we use a soil environmental model to show the importance of considering unfrozen water content (dependent on sediment type, soil water chemistry, and temperature) when assessing the frost susceptibility of sediments. Our ensemble modeling of the vertical structure and evolution of ground ice for fine to coarse-grained sediments matches reasonably well with field measurements at sites from the low Arctic to the cold and hyper-arid Dry Valleys of Antarctica. Our modeling indicates a need to re-evaluate how frost-susceptible sediments are identified when mapping ice-rich permafrost landscapes and provides a framework for the development of quantitative estimates of the vertical distribution of ground ice in permafrost sediments at regional scale.
Funder
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献