Abstract
AbstractStudies to understand the growth of organisms on Mars are hampered by the use of simulants to duplicate martian mineralogy and chemistry. Even though such materials are improving, no terrestrial simulant can replace a real martian sample. Here we report the use of actual martian regolith, in the form of Mars meteorite EETA79001 sawdust, to demonstrate its ability to support the growth of four microorganisms,E. coli. Eucapsissp.,Chr20-20201027-1, andP. halocryophilus, for up to 23 days under terrestrial conditions using regolith:water ratios from 4:1 to 1:10. If the EETA79001 sawdust is widely representative of regolith on the martian surface, our results imply that microbial life under appropriate conditions could have been present on Mars in the past and/or today in the subsurface, and that the regolith does not contain any bactericidal agents. The results of our study have implications not only for putative martian microbial life but also for building bio-sustainable human habitats on Mars.
Funder
National Aeronautics and Space Administration
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献