Visual detection of misfolded alpha-synuclein and prions via capillary-based quaking-induced conversion assay (Cap-QuIC)

Author:

Christenson Peter R.,Jeong Hyeonjeong,Ahn Hyerim,Li Manci,Rowden Gage,Shoemaker Rachel L.,Larsen Peter A.,Park Hye Yoon,Oh Sang-Hyun

Abstract

AbstractNeurodegenerative protein misfolding diseases impact tens of millions of people worldwide, contributing to millions of deaths and economic hardships across multiple scales. The prevalence of neurodegenerative disease is predicted to greatly increase over the coming decades, yet effective diagnostics for such diseases are limited. Most diagnoses come from the observation of external symptoms in clinical settings, which typically manifest during relatively advanced stages of disease, thus limiting potential therapeutic applications. While progress is being made on biomarker testing, the underlying methods largely rely on fragile and expensive equipment that limits their point-of-care potential, especially in developing countries. Here we present Capillary-based Quaking Induced Conversion (Cap-QuIC) as a visual diagnostic assay based on simple capillary action for the detection of neurodegenerative disease without necessitating expensive and complex capital equipment. We demonstrate that Cap-QuIC has the potential to be a detection tool for a broad range of misfolded proteins by successfully distinguishing misfolded versus healthy proteins associated with Parkinson’s disease (α-synuclein) and Chronic Wasting Disease (prions). Additionally, we show that Cap-QuIC can accurately classify biological tissue samples from wild white-tailed deer infected with Chronic Wasting Disease. Our findings elucidate the underlying mechanism that enables the Cap-QuIC assay to distinguish misfolded protein, highlighting its potential as a diagnostic technology for neurodegenerative diseases.

Funder

Momental Foundation

State of Minnesota

University of Minnesota

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3