Abstract
AbstractMass cytometry uses metal-isotope-tagged antibodies to label targets of interest, which enables simultaneous measurements of ~50 proteins or protein modifications in millions of single cells, but its sensitivity is limited. Here, we present a signal amplification technology, termed Amplification by Cyclic Extension (ACE), implementing thermal-cycling-based DNA in situ concatenation in combination with 3-cyanovinylcarbazole phosphoramidite-based DNA crosslinking to enable signal amplification simultaneously on >30 protein epitopes. We demonstrate the utility of ACE in low-abundance protein quantification with suspension mass cytometry to characterize molecular reprogramming during the epithelial-to-mesenchymal transition as well as the mesenchymal-to-epithelial transition. We show the capability of ACE to quantify the dynamics of signaling network responses in human T lymphocytes. We further present the application of ACE in imaging mass cytometry-based multiparametric tissue imaging to identify tissue compartments and profile spatial aspects related to pathological states in polycystic kidney tissues.
Funder
Foundation for the National Institutes of Health
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Ovarian Cancer Research Fund Alliance
Ontario Institute for Cancer Research
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ACE-ing Protein Detection in Single Cells;Onco Zine - The International Oncology Network;2024-07-31