Decoupling density from tallness in analysing the life cycle greenhouse gas emissions of cities

Author:

Pomponi FrancescoORCID,Saint RuthORCID,Arehart Jay H.,Gharavi Niaz,D’Amico BernardinoORCID

Abstract

AbstractThe UN estimate 2.5 billion new urban residents by 2050, thus further increasing global greenhouse gases (GHG) emissions and energy demand, and the environmental impacts caused by the built environment. Achieving optimal use of space and maximal efficiency in buildings is therefore fundamental for sustainable urbanisation. There is a growing belief that building taller and denser is better. However, urban environmental design often neglects life cycle GHG emissions. Here we offer a method that decouples density and tallness in urban environments and allows each to be analysed individually. We test this method on case studies of real neighbourhoods and show that taller urban environments significantly increase life cycle GHG emissions (+154%) and low-density urban environments significantly increase land use (+142%). However, increasing urban density without increasing urban height reduces life cycle GHG emissions while maximising the population capacity. These results contend the claim that building taller is the most efficient way to meet growing demand for urban space and instead show that denser urban environments do not significantly increase life cycle GHG emissions and require less land.

Funder

Edinburgh Napier University

RCUK | Engineering and Physical Sciences Research Council

Royal Academy of Engineering

JA also gratefully acknowledges the financial support for his time from the Temple Hoyne Buell Architectural Fellowship.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3