Abstract
AbstractThe UN estimate 2.5 billion new urban residents by 2050, thus further increasing global greenhouse gases (GHG) emissions and energy demand, and the environmental impacts caused by the built environment. Achieving optimal use of space and maximal efficiency in buildings is therefore fundamental for sustainable urbanisation. There is a growing belief that building taller and denser is better. However, urban environmental design often neglects life cycle GHG emissions. Here we offer a method that decouples density and tallness in urban environments and allows each to be analysed individually. We test this method on case studies of real neighbourhoods and show that taller urban environments significantly increase life cycle GHG emissions (+154%) and low-density urban environments significantly increase land use (+142%). However, increasing urban density without increasing urban height reduces life cycle GHG emissions while maximising the population capacity. These results contend the claim that building taller is the most efficient way to meet growing demand for urban space and instead show that denser urban environments do not significantly increase life cycle GHG emissions and require less land.
Funder
Edinburgh Napier University
RCUK | Engineering and Physical Sciences Research Council
Royal Academy of Engineering
JA also gratefully acknowledges the financial support for his time from the Temple Hoyne Buell Architectural Fellowship.
Publisher
Springer Science and Business Media LLC
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献