Abstract
Abstract
Background
The intensity of transmission of Aedes-borne viruses is heterogeneous, and multiple factors can contribute to variation at small spatial scales. Illuminating drivers of heterogeneity in prevalence over time and space would provide information for public health authorities. The objective of this study is to detect the spatiotemporal clusters and determine the risk factors of three major Aedes-borne diseases, Chikungunya virus (CHIKV), Dengue virus (DENV), and Zika virus (ZIKV) clusters in Mexico.
Methods
We present an integrated analysis of Aedes-borne diseases (ABDs), the local climate, and the socio-demographic profiles of 2469 municipalities in Mexico. We used SaTScan to detect spatial clusters and utilize the Pearson correlation coefficient, Randomized Dependence Coefficient, and SHapley Additive exPlanations to analyze the influence of socio-demographic and climatic factors on the prevalence of ABDs. We also compare six machine learning techniques, including XGBoost, decision tree, Support Vector Machine with Radial Basis Function kernel, K nearest neighbors, random forest, and neural network to predict risk factors of ABDs clusters.
Results
DENV is the most prevalent of the three diseases throughout Mexico, with nearly 60.6% of the municipalities reported having DENV cases. For some spatiotemporal clusters, the influence of socio-economic attributes is larger than the influence of climate attributes for predicting the prevalence of ABDs. XGBoost performs the best in terms of precision-measure for ABDs prevalence.
Conclusions
Both socio-demographic and climatic factors influence ABDs transmission in different regions of Mexico. Future studies should build predictive models supporting early warning systems to anticipate the time and location of ABDs outbreaks and determine the stand-alone influence of individual risk factors and establish causal mechanisms.
Publisher
Springer Science and Business Media LLC
Reference60 articles.
1. Paixao, E. S., Teixeira, M. G. & Rodrigues, L. C. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob. Health 3, e000530 (2018).
2. WHO. Dengue and severe dengue. Available at [https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue]. Last accessed, 7 October 2022.
3. Cattarino, L., Rodriguez-Barraquer, I., Imai, N., Cummings, D. A. T. & Ferguson, N. M. Mapping global variation in dengue transmission intensity. Sci. Transl. Med. 12, https://www.science.org/doi/10.1126/scitranslmed.aax4144 (2020).
4. Lubinda, J. et al. Environmental suitability for Aedes aegypti and Aedes albopictus and the spatial distribution of major arboviral infections in Mexico. Parasite Epidemiol. Control 6, e00116 (2019).
5. Ananth, S. et al. Clinical symptoms of arboviruses in Mexico. Pathogens 9, 964 (2020).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献