Modelling the impact of Omicron and emerging variants on SARS-CoV-2 transmission and public health burden

Author:

Le Rutte Epke A.,Shattock Andrew J.,Chitnis NakulORCID,Kelly Sherrie L.ORCID,Penny Melissa A.ORCID

Abstract

Abstract Background SARS-CoV-2 variants of concern, such as Omicron (B.1.1.529), continue to emerge. Assessing the impact of their potential viral properties on the probability of future transmission dominance and public health burden is fundamental in guiding ongoing COVID-19 control strategies. Methods With an individual-based transmission model, OpenCOVID, we simulated three viral properties; infectivity, severity, and immune-evading ability, all relative to the Delta variant, to identify thresholds for Omicron’s or any emerging VOC’s potential future dominance, impact on public health, and risk to health systems. We further identify for which combinations of viral properties current interventions would be sufficient to control transmission. Results We show that, with first-generation SARS-CoV-2 vaccines and limited physical distancing in place, a VOC’s potential future dominance is primarily driven by its infectivity, which does not always lead to an increased public health burden. However, we also show that highly immune-evading variants that become dominant, even in the case of reduced variant severity, would likely require alternative measures to avoid strain on health systems, such as strengthened physical distancing measures, novel treatments, and second-generation vaccines. Expanded vaccination, that includes a booster dose for adults and child vaccination strategies, is projected to have the biggest public health benefit for a highly infective, highly severe VOC with low immune-evading capacity. Conclusions These findings provide quantitative guidance to decision-makers at a critical time while Omicron’s properties are being assessed and preparedness for emerging VOCs is eminent. We emphasise the importance of both genomic and population epidemiological surveillance.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. World Health Organization. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. Available at: https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern (2021).

2. Dyer, O. Covid-19: South Africa’s surge in cases deepens alarm over omicron variant. BMJ https://doi.org/10.1136/bmj.n3013 (2021).

3. Chen, J., Wang, R., Gilby, N. B. & Wei, G.-W. Omicron variant (B.1.1.529): infectivity, vaccine breakthrough, and antibody resistance. J. Chem. Inf. Model. 62, 412–422 (2022).

4. European Centre for Disease Control (ECDC). Variants of interest and concern in the EU/EEA. Available at: https://gis.ecdc.europa.eu/portal/apps/opsdashboard/index.html#/25b6e879c076412aaa9ae7adb78d3241 (2022).

5. World Health Organization. Update on Omicron. Available at: https://www.who.int/news/item/28-11-2021-update-on-omicron (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3