Multiplexed imaging mass cytometry reveals distinct tumor-immune microenvironments linked to immunotherapy responses in melanoma

Author:

Xiao XuORCID,Guo QianORCID,Cui Chuanliang,Lin YatingORCID,Zhang Lei,Ding Xin,Li Qiyuan,Wang Minshu,Yang WenxianORCID,Kong YanORCID,Yu RongshanORCID

Abstract

Abstract Background Single-cell technologies have enabled extensive analysis of complex immune composition, phenotype and interactions within tumor, which is crucial in understanding the mechanisms behind cancer progression and treatment resistance. Unfortunately, knowledge on cell phenotypes and their spatial interactions has only had limited impact on the pathological stratification of patients in the clinic so far. We explore the relationship between different tumor environments (TMEs) and response to immunotherapy by deciphering the composition and spatial relationships of different cell types. Methods Here we used imaging mass cytometry to simultaneously quantify 35 proteins in a spatially resolved manner on tumor tissues from 26 melanoma patients receiving anti-programmed cell death-1 (anti-PD-1) therapy. Using unsupervised clustering, we profiled 662,266 single cells to identify lymphocytes, myeloid derived monocytes, stromal and tumor cells, and characterized TME of different melanomas. Results Combined single-cell and spatial analysis reveals highly dynamic TMEs that are characterized with variable tumor and immune cell phenotypes and their spatial organizations in melanomas, and many of these multicellular features are associated with response to anti-PD-1 therapy. We further identify six distinct TME archetypes based on their multicellular compositions, and find that patients with different TME archetypes responded differently to anti-PD-1 therapy. Finally, we find that classifying patients based on the gene expression signature derived from TME archetypes predicts anti-PD-1 therapy response across multiple validation cohorts. Conclusions Our results demonstrate the utility of multiplex proteomic imaging technologies in studying complex molecular events in a spatially resolved manner for the development of new strategies for patient stratification and treatment outcome prediction.

Funder

Fundamental Resarch Funds for the Chinese Central University

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3