Synthesis and preclinical testing of a selective beta-subtype agonist of thyroid hormone receptor ZTA-261

Author:

Nambo MasakazuORCID,Nishiwaki-Ohkawa TaekoORCID,Ito Akihiro,Ariki Zachary T.,Ito Yuka,Kato Yuuki,Yar Muhammad,Yim Jacky C. -H.ORCID,Kim EmilyORCID,Sharkey Elizabeth,Kano KeikoORCID,Mishiro-Sato EmiORCID,Okimura Kosuke,Maruyama MichiyoORCID,Ota WataruORCID,Furukawa Yuko,Nakayama TomoyaORCID,Kobayashi Misato,Horio Fumihiko,Sato AyatoORCID,Crudden Cathleen M.ORCID,Yoshimura TakashiORCID

Abstract

Abstract Background Thyroid hormones (TH) regulate the basal metabolic rate through their receptors THRα and THRβ. TH activates lipid metabolism via THRβ, however, an excess amount of TH can lead to tachycardia, bone loss, and muscle wasting through THRα. In recent years, TH analogs that selectively bind to THRβ have gained attention as new agents for treating dyslipidemia and obesity, which continue to pose major challenges to public health worldwide. Methods We developed a TH analog, ZTA-261, by modifying the existing THRβ-selective agonists GC-1 and GC-24. To determine the THRβ-selectivity of ZTA-261, an in vitro radiolabeled TH displacement assay was conducted. ZTA-261 was intraperitoneally injected into a mouse model of high-fat diet-induced obesity, and its effectiveness in reducing body weight and visceral fat, and improving lipid metabolism was assessed. In addition, its toxicity in the liver, heart, and bone was evaluated. Results ZTA-261 is more selective towards THRβ than GC-1. Although ZTA-261 is less effective in reducing body weight and visceral fat than GC-1, it is as effective as GC-1 in reducing the levels of serum and liver lipids. These effects are mediated by the same pathway as that of T3, a natural TH, as evidenced by similar changes in the expression of TH-induced and lipid metabolism-related genes. The bone, cardiac, and hepatotoxicity of ZTA-261 are significantly lower than those of GC-1. Conclusions ZTA-261, a highly selective and less toxic THRβ agonist, has the potential to be used as a drug for treating diseases related to lipid metabolism.

Funder

MEXT | Japan Society for the Promotion of Science

Ono Medical Research Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3