A diagnostic classifier for gene expression-based identification of early Lyme disease

Author:

Servellita Venice,Bouquet Jerome,Rebman Alison,Yang Ting,Samayoa Erik,Miller Steve,Stone Mars,Lanteri Marion,Busch MichaelORCID,Tang PatrickORCID,Morshed Muhammad,Soloski Mark J.,Aucott John,Chiu Charles Y.ORCID

Abstract

Abstract Background Lyme disease is a tick-borne illness that causes an estimated 476,000 infections annually in the United States. New diagnostic tests are urgently needed, as existing antibody-based assays lack sufficient sensitivity and specificity. Methods Here we perform transcriptome profiling by RNA sequencing (RNA-Seq), targeted RNA-Seq, and/or machine learning-based classification of 263 peripheral blood mononuclear cell samples from 218 subjects, including 94 early Lyme disease patients, 48 uninfected control subjects, and 57 patients with other infections (influenza, bacteremia, or tuberculosis). Differentially expressed genes among the 25,278 in the reference database are selected based on ≥1.5-fold change, ≤0.05 p value, and ≤0.001 false-discovery rate cutoffs. After gene selection using a k-nearest neighbor algorithm, the comparative performance of ten different classifier models is evaluated using machine learning. Results We identify a 31-gene Lyme disease classifier (LDC) panel that can discriminate between early Lyme patients and controls, with 23 genes (74.2%) that have previously been described in association with clinical investigations of Lyme disease patients or in vitro cell culture and rodent studies of Borrelia burgdorferi infection. Evaluation of the LDC using an independent test set of samples from 63 subjects yields an overall sensitivity of 90.0%, specificity of 100%, and accuracy of 95.2%. The LDC test is positive in 85.7% of seronegative patients and found to persist for ≥3 weeks in 9 of 12 (75%) patients. Conclusions These results highlight the potential clinical utility of a gene expression classifier for diagnosis of early Lyme disease, including in patients negative by conventional serologic testing.

Funder

Bay Area Lyme Foundation

U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health

U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3