Multi-center retrospective cohort study applying deep learning to electrocardiograms to identify left heart valvular dysfunction

Author:

Vaid AkhilORCID,Argulian Edgar,Lerakis Stamatios,Beaulieu-Jones Brett K.,Krittanawong Chayakrit,Klang Eyal,Lampert Joshua,Reddy Vivek Y.,Narula Jagat,Nadkarni Girish N.ORCID,Glicksberg Benjamin S.ORCID

Abstract

Abstract Background Aortic Stenosis and Mitral Regurgitation are common valvular conditions representing a hidden burden of disease within the population. The aim of this study was to develop and validate deep learning-based screening and diagnostic tools that can help guide clinical decision making. Methods In this multi-center retrospective cohort study, we acquired Transthoracic Echocardiogram reports from five Mount Sinai hospitals within New York City representing a demographically diverse cohort of patients. We developed a Natural Language Processing pipeline to extract ground-truth labels about valvular status and paired these to Electrocardiograms (ECGs). We developed and externally validated deep learning models capable of detecting valvular disease, in addition to considering scenarios of clinical deployment. Results We use 617,338 ECGs paired to transthoracic echocardiograms from 123,096 patients to develop a deep learning model for detection of Mitral Regurgitation. Area Under Receiver Operating Characteristic curve (AUROC) is 0.88 (95% CI:0.88–0.89) in internal testing, and 0.81 (95% CI:0.80–0.82) in external validation. To develop a model for detection of Aortic Stenosis, we use 617,338 Echo-ECG pairs for 128,628 patients. AUROC is 0.89 (95% CI: 0.88-0.89) in internal testing, going to 0.86 (95% CI: 0.85-0.87) in external validation. The model’s performance increases leading up to the time of the diagnostic echo, and it performs well in validation against requirement of Transcatheter Aortic Valve Replacement procedures. Conclusions Deep learning based tools can increase the amount of information extracted from ubiquitous investigations such as the ECG. Such tools are inexpensive, can help in earlier disease detection, and potentially improve prognosis.

Funder

U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3