Abstract
Abstract
Background
Identifying causal risk factors for severe coronavirus disease 2019 (COVID-19) is critical for its prevention and treatment. Many associated pre-existing conditions and biomarkers have been reported, but these observational associations suffer from confounding and reverse causation.
Methods
Here, we perform a large-scale two-sample Mendelian randomization (MR) analysis to evaluate the causal roles of many traits in severe COVID-19.
Results
Our results highlight multiple body mass index (BMI)-related traits as risk-increasing: BMI (OR: 1.89, 95% CI: 1.51–2.37), hip circumference (OR: 1.46, 1.15–1.85), and waist circumference (OR: 1.82, 1.36–2.43). Our multivariable MR analysis further suggests that the BMI-related effect might be driven by fat mass (OR: 1.63, 1.03–2.58), but not fat-free mass (OR: 1.00, 0.61–1.66). Several white blood cell counts are negatively associated with severe COVID-19, including those of neutrophils (OR: 0.76, 0.61–0.94), granulocytes (OR: 0.75, 0.601–0.93), and myeloid white blood cells (OR: 0.77, 0.62–0.96). Furthermore, some circulating proteins are associated with an increased risk of (e.g., zinc-alpha-2-glycoprotein) or protection from severe COVID-19 (e.g., prostate-associated microseminoprotein).
Conclusions
Our study suggests that fat mass and white blood cells might be involved in the development of severe COVID-19. It also prioritizes potential risk and protective factors that might serve as drug targets and guide the effective protection of high-risk individuals.
Funder
UGA | University of Georgia Research Foundation
Publisher
Springer Science and Business Media LLC
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献