Predicting which patients with cancer will see a psychiatrist or counsellor from their initial oncology consultation document using natural language processing

Author:

Nunez John-JoseORCID,Leung BonnieORCID,Ho Cheryl,Ng Raymond T.,Bates Alan T.ORCID

Abstract

Abstract Background Patients with cancer often have unmet psychosocial needs. Early detection of who requires referral to a counsellor or psychiatrist may improve their care. This work used natural language processing to predict which patients will see a counsellor or psychiatrist from a patient’s initial oncology consultation document. We believe this is the first use of artificial intelligence to predict psychiatric outcomes from non-psychiatric medical documents. Methods This retrospective prognostic study used data from 47,625 patients at BC Cancer. We analyzed initial oncology consultation documents using traditional and neural language models to predict whether patients would see a counsellor or psychiatrist in the 12 months following their initial oncology consultation. Results Here, we show our best models achieved a balanced accuracy (receiver-operating-characteristic area-under-curve) of 73.1% (0.824) for predicting seeing a psychiatrist, and 71.0% (0.784) for seeing a counsellor. Different words and phrases are important for predicting each outcome. Conclusion These results suggest natural language processing can be used to predict psychosocial needs of patients with cancer from their initial oncology consultation document. Future research could extend this work to predict the psychosocial needs of medical patients in other settings.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3