Mapping multimorbidity progression among 190 diseases

Author:

Han ShashaORCID,Li Sairan,Yang Yunhaonan,Liu Lihong,Ma Libing,Leng Zhiwei,Mair Frances S.ORCID,Butler Christopher R.ORCID,Nunes Bruno Pereira,Miranda J. JaimeORCID,Yang Weizhong,Shao Ruitai,Wang Chen

Abstract

Abstract Background Current clustering of multimorbidity based on the frequency of common disease combinations is inadequate. We estimated the causal relationships among prevalent diseases and mapped out the clusters of multimorbidity progression among them. Methods In this cohort study, we examined the progression of multimorbidity among 190 diseases among over 500,000 UK Biobank participants over 12.7 years of follow-up. Using a machine learning method for causal inference, we analyzed patterns of how diseases influenced and were influenced by others in females and males. We used clustering analysis and visualization algorithms to identify multimorbidity progress constellations. Results We show the top influential and influenced diseases largely overlap between sexes in chronic diseases, with sex-specific ones tending to be acute diseases. Patterns of diseases that influence and are influenced by other diseases also emerged (clustering significance Pau > 0.87), with the top influential diseases affecting many clusters and the top influenced diseases concentrating on a few, suggesting that complex mechanisms are at play for the diseases that increase the development of other diseases while share underlying causes exist among the diseases whose development are increased by others. Bi-directional multimorbidity progress presents substantial clustering tendencies both within and across International Classification Disease chapters, compared to uni-directional ones, which can inform future studies for developing cross-specialty strategies for multimorbidity. Finally, we identify 10 multimorbidity progress constellations for females and 9 for males (clustering stability, adjusted Rand index >0.75), showing interesting differences between sexes. Conclusion Our findings could inform the future development of targeted interventions and provide an essential foundation for future studies seeking to improve the prevention and management of multimorbidity.

Funder

National Natural Science Foundation of China

Chinese Academy of Medical Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3