Abstract
Abstract
Background
Accurate prediction of cerebral amyloidosis with easily available indicators is urgently needed for diagnosis and treatment of Alzheimer’s disease (AD).
Methods
We examined plasma Aβ42, Aβ40, T-tau, P-tau181, and NfL, with APOE genotypes, cognitive test scores and key demographics in a large Chinese cohort (N = 609, aged 40 to 84 years) covering full AD spectrum. Data-driven integrated computational models were developed to predict brain β-amyloid (Aβ) pathology.
Results
Our computational models accurately predict brain Aβ positivity (area under the ROC curves (AUC) = 0.94). The results are validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Particularly, the models have the highest prediction power (AUC = 0.97) in mild cognitive impairment (MCI) participants. Three levels of models are designed with different accuracies and complexities. The model which only consists of plasma biomarkers can predict Aβ positivity in amnestic MCI (aMCI) patients with AUC = 0.89. Generally the models perform better in participants without comorbidities or family histories.
Conclusions
The innovative integrated models provide opportunity to assess Aβ pathology in a non-invasive and cost-effective way, which might facilitate AD-drug development, early screening, clinical diagnosis and prognosis evaluation.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献