Abstract
Abstract
Background
Long-term monitoring of Electrocardiogram (ECG) recordings is crucial to diagnose arrhythmias. Clinicians can find it challenging to diagnose arrhythmias, and this is a particular issue in more remote and underdeveloped areas. The development of digital ECG and AI methods could assist clinicians who need to diagnose arrhythmias outside of the hospital setting.
Methods
We constructed a large-scale Chinese ECG benchmark dataset using data from 272,753 patients collected from January 2017 to December 2021. The dataset contains ECG recordings from all common arrhythmias present in the Chinese population. Several experienced cardiologists from Shanghai First People’s Hospital labeled the dataset. We then developed a deep learning-based multi-label interpretable diagnostic model from the ECG recordings. We utilized Accuracy, F1 score and AUC-ROC to compare the performance of our model with that of the cardiologists, as well as with six comparison models, using testing and hidden data sets.
Results
The results show that our approach achieves an F1 score of 83.51%, an average AUC ROC score of 0.977, and 93.74% mean accuracy for 6 common arrhythmias. Results from the hidden dataset demonstrate the performance of our approach exceeds that of cardiologists. Our approach also highlights the diagnostic process.
Conclusions
Our diagnosis system has superior diagnostic performance over that of clinicians. It also has the potential to help clinicians rapidly identify abnormal regions on ECG recordings, thus improving efficiency and accuracy of clinical ECG diagnosis in China. This approach could therefore potentially improve the productivity of out-of-hospital ECG diagnosis and provides a promising prospect for telemedicine.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献