Agonist-antagonist muscle strain in the residual limb preserves motor control and perception after amputation

Author:

Song HyungeunORCID,Israel Erica A.,Gutierrez-Arango SamanthaORCID,Teng Ashley C.,Srinivasan Shriya S.ORCID,Freed Lisa E.ORCID,Herr Hugh M.ORCID

Abstract

Abstract Background Elucidating underlying mechanisms in subject-specific motor control and perception after amputation could guide development of advanced surgical and neuroprosthetic technologies. In this study, relationships between preserved agonist-antagonist muscle strain within the residual limb and preserved motor control and perception capacity are investigated. Methods Fourteen persons with unilateral transtibial amputations spanning a range of ages, etiologies, and surgical procedures underwent evaluations involving free-space mirrored motions of their lower limbs. Research has shown that varied motor control in biologically intact limbs is executed by the activation of muscle synergies. Here, we assess the naturalness of phantom joint motor control postamputation based on extracted muscle synergies and their activation profiles. Muscle synergy extraction, degree of agonist-antagonist muscle strain, and perception capacity are estimated from electromyography, ultrasonography, and goniometry, respectively. Results Here, we show significant positive correlations (P < 0.005–0.05) between sensorimotor responses and residual limb agonist-antagonist muscle strain. Identified trends indicate that preserving even 20–26% of agonist-antagonist muscle strain within the residuum compared to a biologically intact limb is effective in preserving natural motor control postamputation, though preserving limb perception capacity requires more (61%) agonist-antagonist muscle strain preservation. Conclusions The results suggest that agonist-antagonist muscle strain is a characteristic, readily ascertainable residual limb structural feature that can help explain variability in amputation outcome, and agonist-antagonist muscle strain preserving surgical amputation strategies are one way to enable more effective and biomimetic sensorimotor control postamputation.

Funder

U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3