Development and preliminary validation of a machine learning system for thyroid dysfunction diagnosis based on routine laboratory tests

Author:

Hu Min,Asami Chikashi,Iwakura HiroshiORCID,Nakajima Yasuyo,Sema Ryousuke,Kikuchi Tsuyoshi,Miyata Tsuyoshi,Sakamaki Koji,Kudo Takumi,Yamada Masanobu,Akamizu TakashiORCID,Sakakibara YasubumiORCID

Abstract

Abstract Background Approximately 2.4 million patients in Japan would benefit from treatment for thyroid disease, including Graves’ disease and Hashimoto’s disease. However, only 450,000 of them are receiving treatment, and many patients with thyroid dysfunction remain largely overlooked. In this retrospective study, we aimed to develop and conduct preliminary testing on a machine learning method for screening patients with hyperthyroidism and hypothyroidism who would benefit from prompt medical treatment. Methods We collected electronic medical records and medical checkup data from four hospitals in Japan. We applied four machine learning algorithms to construct classification models to distinguish patients with hyperthyroidism and hypothyroidism from control subjects using routine laboratory tests. Performance evaluation metrics such as sensitivity, specificity, and the area under receiver operating characteristic (AUROC) were obtained. Techniques such as feature importance were further applied to understand the contribution of each feature to the machine learning output. Results The results of cross-validation and external evaluation indicated that we achieved high classification accuracies (AUROC = 93.8% for hyperthyroidism model and AUROC = 90.9% for hypothyroidism model). Serum creatinine (S-Cr), mean corpuscular volume (MCV), and total cholesterol were the three features that were most strongly correlated with the hyperthyroidism model, and S-Cr, lactic acid dehydrogenase (LDH), and total cholesterol were correlated with the hypothyroidism model. Conclusions We demonstrated the potential of machine learning approaches for diagnosing the presence of thyroid dysfunction from routine laboratory tests. Further validation, including prospective clinical studies, is necessary prior to application of our method in the clinic.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3