Abstract
Abstract
Background/objectives
Prolonged fasting triggers a stress response within the human body. Our objective was to investigate the impact of prolonged fasting, in conjunction with stress, on kynurenine pathway metabolites.
Subjects/methods
Healthy males were divided into fasting group (zero-calorie-restriction) for 6 days (FAST, n = 14), and control group (CON, n = 10). Blood and saliva samples were collected at baseline, Day 2, Day 4, Day 6 during fasting period, and 1 week after resuming regular diet. Plasma levels of kynurenine pathway metabolites were measured using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Plasma and salivary samples were analyzed for stress markers.
Results
A pronounced activation of the kynurenine pathway in individuals on FAST trial was revealed. Concentrations of picolinic acid (PIC), kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) were significantly increased, with peak levels observed on Day 6 (P < 0.0001). Conversely, concentrations of tryptophan (TRP) and quinolinic acid (QUIN) decreased (P < 0.0001), while kynurenine (KYN) and nicotinamide (NAM) levels remained stable. Cortisol and noradrenaline concentrations remained unchanged. However, adrenaline levels significantly increased on Day 4 within FAST compared to CON (P = 0.005). Notably, all deviations in kynurenine pathway metabolite levels returned to baseline values upon resuming regular diet following the 6-day fasting regimen, even when weight and BMI parameters were not restored.
Conclusions
Extended fasting over 6 days induces the kynurenine pathway and has minimal effects on stress markers. Restoration of metabolite concentrations upon regular feeding implies rapid adaptation of the kynurenine pathway synthetic enzymes to maintain homeostasis when faced with perturbations.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献