Associations between 3D surface scanner derived anthropometric measurements and body composition in a cross-sectional study

Author:

Guarnieri Lopez ManuelORCID,Matthes Katarina LORCID,Sob Cynthia,Bender NicoleORCID,Staub Kaspar

Abstract

Abstract Background 3D laser-based photonic scanners are increasingly used in health studies to estimate body composition. However, too little is known about whether various 3D body scan measures estimate body composition better than single standard anthropometric measures, and which body scans best estimate it. Furthermore, little is known about differences by sex and age. Methods 105 men and 96 women aged between 18 and 90 years were analysed. Bioelectrical Impedance Analysis was used to estimate whole relative fat mass (RFM), visceral adipose tissue (VAT) and skeletal muscle mass index (SMI). An Anthroscan VITUSbodyscan was used to obtain 3D body scans (e.g. volumes, circumferences, lengths). To reduce the number of possible predictors that could predict RFM, VAT and SMI backward elimination was performed. With these selected predictors linear regression on the respective body compositions was performed and the explained variations were compared with models using standard anthropometric measurements (Body Mass Index (BMI), waist circumference (WC) and waist-to-height-ratio (WHtR)). Results Among the models based on standard anthropometric measures, WC performed better than BMI and WHtR in estimating body composition in men and women. The explained variations in models including body scan variables are consistently higher than those from standard anthropometrics models, with an increase in explained variations between 5% (RFM for men) and 10% (SMI for men). Furthermore, the explained variation of body composition was additionally increased when age and lifestyle variables were added. For each of the body composition variables, the number of predictors differed between men and women, but included mostly volumes and circumferences in the central waist/chest/hip area and the thighs. Conclusions 3D scan models performed better than standard anthropometric measures models to predict body composition. Therefore, it is an advantage for larger health studies to look at body composition more holistically using 3D full body surface scans.

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference71 articles.

1. World Health Organization. Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization. 2009. Accessed 19 Jun 2023. https://apps.who.int/iris/handle/10665/44203.

2. Kopelman PG. Obesity as a medical problem. Nature 2000;404:635–43.

3. Després JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 1990;10:497–511.

4. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50:889–96.

5. Wannamethee SG, Shaper AG, Lennon L, Whincup PH. Decreased muscle mass and increased central adiposity are independently related to mortality in older men. Am J Clin Nutr. 2007;86:1339–46.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3