Abstract
AbstractSpliceosome is often assembled across an exon and undergoes rearrangement to span a neighboring intron. Most states of the intron-defined spliceosome have been structurally characterized. However, the structure of a fully assembled exon-defined spliceosome remains at large. During spliceosome assembly, the pre-catalytic state (B complex) is converted from its precursor (pre-B complex). Here we report atomic structures of the exon-defined human spliceosome in four sequential states: mature pre-B, late pre-B, early B, and mature B. In the previously unknown late pre-B state, U1 snRNP is already released but the remaining proteins are still in the pre-B state; unexpectedly, the RNAs are in the B state, with U6 snRNA forming a duplex with 5′-splice site and U5 snRNA recognizing the 3′-end of the exon. In the early and mature B complexes, the B-specific factors are stepwise recruited and specifically recognize the exon 3′-region. Our study reveals key insights into the assembly of the exon-defined spliceosomes and identifies mechanistic steps of the pre-B-to-B transition.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Sakharkar, M. K., Perumal, B. S., Sakharkar, K. R. & Kangueane, P. An analysis on gene architecture in human and mouse genomes. In Silico Biol. 5, 347–365 (2005).
2. Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).
3. Black, D. L. Finding splice sites within a wilderness of RNA. RNA 1, 763–771 (1995).
4. Robberson, B. L., Cote, G. J. & Berget, S. M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10, 84–94 (1990).
5. Schneider, M. et al. Exon definition complexes contain the tri-snRNP and can be directly converted into B-like precatalytic splicing complexes. Mol. Cell 38, 223–235 (2010).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献