Glutamate drives ‘local Ca2+ release’ in cardiac pacemaker cells

Author:

Xie Duanyang,Xiong Ke,Su Xuling,Wang Guanghua,Zou Qicheng,Wang Luxin,Zhang Caihong,Cao Yuting,Shao Beihua,Zhang Yixin,Zhang Peidong,Liang Dandan,Liu Yi,Chen Yi-Han

Abstract

AbstractThe sinoatrial node (SAN) is the origin of the electrical signals for rhythmic heartbeats in mammals. The spontaneous firing of SAN pacemaker cells (SANPCs) triggers cardiac contraction. ‘Local Ca2+ release’ (LCR), a unique cellular activity, acts as the ‘engine’ of the spontaneous firing of SANPCs. However, the mechanism of LCR initiation remains unclear. Here, we report that endogenous glutamate drives LCRs in SANPCs. Using a glutamate sensor, we unraveled a tight correlation between glutamate accumulation and LCR occurrence, indicating a potential relationship between glutamate and LCRs. Intracellular application of glutamate significantly enhanced the LCRs in both intact and permeabilized SANPCs. Mechanistically, we revealed that mitochondrial excitatory amino acid transporter 1 (EAAT1)-dependent mitochondrial glutamate import promoted ROS generation, which in turn led to the oxidation of Ca2+-handling proteins, ultimately resulting in enhanced LCRs. Importantly, EAAT1 depletion reduced both the spontaneous firing rates of isolated SANPCs and the heart rate in vitro and in vivo, suggesting the central role of EAAT1 as a glutamate transporter in the regulation of cardiac autonomic rhythm. In conclusion, our results indicate that glutamate serves as an LCR igniter in SANPCs, adding a potentially important element to the coupled-clock theory that explains the origin of spontaneous firing. These findings shed new light on the future prevention and treatment of cardiac pacemaker cell-related arrhythmias.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3