Abstract
AbstractCa2+ channels are essential to cell birth, life, and death. They can be externally activated by optogenetic tools, but this requires robust introduction of exogenous optogenetic genes for expression of photosensitive proteins in biological systems. Here we present femtoSOC, a method for direct control of Ca2+ channels solely by ultrafast laser without the need for optogenetic tools or any other exogenous reagents. Specifically, by focusing and scanning wavelength-tuned low-power femtosecond laser pulses on the plasma membrane for multiphoton excitation, we directly induced Ca2+ influx in cultured cells. Mechanistic study reveals that photoexcited flavins covalently bind cysteine residues in Orai1 via thioether bonds, which facilitates Orai1 polymerization to form store-operated calcium channels (SOCs) independently of STIM1, a protein generally participating in SOC formation, enabling all-optical activation of Ca2+ influx and downstream signaling pathways. Moreover, we used femtoSOC to demonstrate direct neural activation both in brain slices in vitro and in intact brains of living mice in vivo in a spatiotemporal-specific manner, indicating potential utility of femtoSOC.
Funder
National Natural Science Foundation of China
Shanghai Jiao Tong University
Third Military Medical University
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献