Li iontronics in single-crystalline T-Nb2O5 thin films with vertical ionic transport channels

Author:

Han HyeonORCID,Jacquet Quentin,Jiang ZhenORCID,Sayed Farheen N.,Jeon Jae-Chun,Sharma Arpit,Schankler Aaron M.ORCID,Kakekhani ArvinORCID,Meyerheim Holger L.ORCID,Park Jucheol,Nam Sang Yeol,Griffith Kent J.ORCID,Simonelli LauraORCID,Rappe Andrew M.ORCID,Grey Clare P.ORCID,Parkin Stuart S. P.ORCID

Abstract

AbstractThe niobium oxide polymorph T-Nb2O5 has been extensively investigated in its bulk form especially for applications in fast-charging batteries and electrochemical (pseudo)capacitors. Its crystal structure, which has two-dimensional (2D) layers with very low steric hindrance, allows for fast Li-ion migration. However, since its discovery in 1941, the growth of single-crystalline thin films and its electronic applications have not yet been realized, probably due to its large orthorhombic unit cell along with the existence of many polymorphs. Here we demonstrate the epitaxial growth of single-crystalline T-Nb2O5 thin films, critically with the ionic transport channels oriented perpendicular to the film’s surface. These vertical 2D channels enable fast Li-ion migration, which we show gives rise to a colossal insulator–metal transition, where the resistivity drops by 11 orders of magnitude due to the population of the initially empty Nb 4d0 states by electrons. Moreover, we reveal multiple unexplored phase transitions with distinct crystal and electronic structures over a wide range of Li-ion concentrations by comprehensive in situ experiments and theoretical calculations, which allow for the reversible and repeatable manipulation of these phases and their distinct electronic properties. This work paves the way for the exploration of novel thin films with ionic channels and their potential applications.

Funder

EC | Horizon 2020 Framework Programme

DOE | SC | Basic Energy Sciences

University of Cambridge | St Edmund’s College, University of Cambridge | Faraday Institute for Science and Religion

United States Department of Defense | United States Navy | Office of Naval Research

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3