Suppression of Dexter transfer by covalent encapsulation for efficient matrix-free narrowband deep blue hyperfluorescent OLEDs

Author:

Cho Hwan-HeeORCID,Congrave Daniel G.ORCID,Gillett Alexander J.ORCID,Montanaro StephanieORCID,Francis Haydn E.,Riesgo-Gonzalez Víctor,Ye JunzhiORCID,Chowdury Rituparno,Zeng Weixuan,Etherington Marc K.ORCID,Royakkers JeroenORCID,Millington OliverORCID,Bond Andrew D.ORCID,Plasser FelixORCID,Frost Jarvist M.,Grey Clare P.ORCID,Rao AkshayORCID,Friend Richard H.ORCID,Greenham Neil C.ORCID,Bronstein HugoORCID

Abstract

AbstractHyperfluorescence shows great promise for the next generation of commercially feasible blue organic light-emitting diodes, for which eliminating the Dexter transfer to terminal emitter triplet states is key to efficiency and stability. Current devices rely on high-gap matrices to prevent Dexter transfer, which unfortunately leads to overly complex devices from a fabrication standpoint. Here we introduce a molecular design where ultranarrowband blue emitters are covalently encapsulated by insulating alkylene straps. Organic light-emitting diodes with simple emissive layers consisting of pristine thermally activated delayed fluorescence hosts doped with encapsulated terminal emitters exhibit negligible external quantum efficiency drops compared with non-doped devices, enabling a maximum external quantum efficiency of 21.5%. To explain the high efficiency in the absence of high-gap matrices, we turn to transient absorption spectroscopy. It is directly observed that Dexter transfer from a pristine thermally activated delayed fluorescence sensitizer host can be substantially reduced by an encapsulated terminal emitter, opening the door to highly efficient ‘matrix-free’ blue hyperfluorescence.

Funder

RCUK | Engineering and Physical Sciences Research Council

George and Lilian Schiff Foundation for Ph.D. studentship funding

Herchel Smith fund

Leverhulme Trust

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3