L-asparaginase induces IP3R-mediated ER Ca2+ release by targeting µ-OR1 and PAR2 and kills acute lymphoblastic leukemia cells

Author:

Lee Jung KwonORCID,Kamran Hamza,Lee Ki-YoungORCID

Abstract

AbstractL-asparaginase is a standard therapeutic option for acute lymphoblastic leukemia (aLL), a hematologic cancer that claims the most lives of pediatric cancer patients. Previously, we demonstrated that L-asparaginase kills aLL cells via a lethal rise in [Ca2+]i due to IP3R-mediated ER Ca2+ release followed by calpain-1-Bid-caspase-3/12 activation (Blood, 133, 2222-2232). However, upstream targets of L-asparaginase that trigger IP3R-mediated ER Ca2+ release remain elusive. Here, we show that L-asparaginase targets µ-OR1 and PAR2 and induces IP3R-mediated ER Ca2+ release in aLL cells. In doing so, µ-OR1 plays a major role while PAR2 plays a minor role. Utilizing PAR2- and µ-OR1-knockdown cells, we demonstrate that L-asparaginase stimulation of µ-OR1 and PAR2 relays its signal via Gαi and Gαq, respectively. In PAR2-knockdown cells, stimulation of adenylate cyclase with forskolin or treatment with 8-CPT-cAMP reduces L-asparaginase-induced µ-OR1-mediated ER Ca2+ release, suggesting that activation of µ-OR1 negatively regulates AC and cAMP. In addition, the PKA inhibitor 14-22 amide (myr) alone evokes ER Ca2+ release, and subsequent L-asparaginase treatment does not induce further ER Ca2+ release, indicating the involvement of PKA inhibition in L-asparaginase-induced µ-OR1-mediated ER Ca2+ release, which can bypass the L-asparaginase-µ-OR1-AC-cAMP loop. This coincides with (a) the decreases in PKA-dependent inhibitory PLCβ3 Ser1105 phosphorylation, which prompts PLCβ3 activation and ER Ca2+ release, and (b) BAD Ser118 phosphorylation, which leads to caspase activation and apoptosis. Thus, our findings offer new insights into the Ca2+-mediated mechanisms behind L-asparaginase-induced aLL cell apoptosis and suggest that PKA may be targeted for therapeutic intervention for aLL.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3